

Welcome to sng’s documentation!

The sng package (short for “Startup Name Generator”) is hosted on GitHub [https://github.com/AlexEngelhardt/startup-name-generator]. This is its documentation.

Contents:

	Introduction
	Summary

	Supplied wordlists

	Background

	Installation
	Install from GitHub

	Install from PyPI

	Quickstart
	Prepare and train the model

	Save and load the model for later

	Discussion
	Data preprocessing

	The RNN architecture

	Sampling Temperature

	Modules
	Config

	Generator

	Wordlists

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Summary

This package takes a wordlist, then trains a model that can automatically
generate name suggestions for things like companies or software. You feed it a
text corpus with a certain theme, e.g. a Celtic text, and it then outputs
similar sounding suggestions. An example call to a trained model looks like this:

>>> cfg = sng.Config(suffix=' Labs')
>>> gen = sng.Generator(wordlist_file='my_wordlist.txt')
>>> gen.fit()
>>> gen.simulate(n=4)

['Ercos Software', 'Riuri Software', 'Palia Software',
 'Critim Software']

The package source is available on GitHub [https://github.com/AlexEngelhardt/startup-name-generator].

I also gave a lightning talk presenting the basic idea, it’s available on Youtube [https://www.youtube.com/watch?v=1w3Q3CEldG0].

Supplied wordlists

The package comes with sample word lists in German, English, and French, and
more “exotic” corpora of Pokemon names, death metal song lyrics, and
J.R.R. Tolkien’s Black Speech, the language of Mordor. Below, I’ll briefly
describe them and also show some randomly sampled output for the (totally not
cherry-picked) generated words. These corpora are available in the wordlists
subdirectory [https://github.com/AlexEngelhardt/startup-name-generator/tree/master/sng/wordlists].

	German [http://gutenberg.spiegel.de/buch/robinson-crusoe-747/1].
The first chapter of Robinson Crusoe in German

	English [http://www.umich.edu/~umfandsf/other/ebooks/alice30.txt].
Alice in Wonderland

	Greek [http://ntwords.com/eng_gr.htm]
A short list of Greek words (in the latin alphabet)

	Gallic (source 1) [http://oda.chez-alice.fr/gallicdico.htm]: A list of Gallic words. (source 2) [http://www.darklyrics.com/e/eluveitie.html]: Selected Gallic song lyrics from the band Eluveitie

	Latin [http://www.thelatinlibrary.com/ovid/ovid.met1.shtml]:
The first book of Ovid’s Metamorphoses

	French [https://fr.wikipedia.org/wiki/France]:
The French Wikipedia entry for France

	Behemoth [http://www.darklyrics.com/b/behemoth.html]:
English song lyrics by the death metal band Behemoth. Sampled words will have be more occult themed

	The Black Speech [http://www.angelfire.com/ia/orcishnations/englishorcish.html]:
JRR Tolkien’s language of the Orcs

	Lorem Ipsum [http://www.lipsum.com]:
The classic lorem ipsum text

	Pokemon [https://github.com/veekun/pokedex/blob/74e22520db7e6706d2e7ad2109f15b7e9be10a24/pokedex/data/csv/pokemon.csv]:
A list of 900 Pokemon. Your company will sound like one of them, then!

Celtic

My main target was a Celtic sounding name. Therefore, I first created a corpus of two parts (browse it here [https://github.com/AlexEngelhardt/startup-name-generator/blob/master/sng/wordlists/gallic.txt]): first, a Gallic dictionary, and second, selected song lyrics by the swiss band Eluveitie [http://www.darklyrics.com/e/eluveitie.html]. They write in the Gaulish language, which reads very pleasantly and makes for good startup names in my opinion:

Lucia
Reuoriosi
Iacca
Helvetia
Eburo
Ectros
Uxopeilos
Etacos
Neuniamins
Nhellos

Pokemon

I also wanted to feed the model a list of all Pokemon [https://github.com/AlexEngelhardt/startup-name-generator/blob/master/sng/wordlists/pokemon.txt], and then generate a list of new Pokemon-themed names:

Grubbin
Agsharon
Oricorina
Erskeur
Electrode
Ervivare
Unfeon
Whinx
Onterdas
Cagbanitl

Tolkien’s Black Speech

J.R.R. Tolkien’s Black Speech [http://www.angelfire.com/ia/orcishnations/englishorcish.html], the language of the Orcs, was a just-for-fun experiment (wordlist here [https://github.com/AlexEngelhardt/startup-name-generator/blob/master/sng/wordlists/black-speech.txt]). It would be too outlandish for a company name, but nonetheless an interesting sounding corpus:

Aratani
Arau
Ushtarak
Ishi
Kakok
Ulig
Ruga
Arau
Lakan
Udaneg

Death metal lyrics

As a metal fan, I also wanted to see what happens if the training data becomes song lyrics. I used lyrics by the Polish death metal band Behemoth [http://www.darklyrics.com/b/behemoth.html], because the songs are filled with occult-sounding words (see the wordlist [https://github.com/AlexEngelhardt/startup-name-generator/blob/master/sng/wordlists/behemoth.txt]):

Artered
Unlieling
Undewfions
Archon
Unleash
Architer
Archaror
Lament
Unionih
Lacerate

You can add anything from “Enterprises” to “Labs” as a suffix to your company name. I found a long list of possible suffixes here [https://www.reddit.com/r/Entrepreneur/comments/4jfrgl/is_there_a_list_of_generic_company_name_endings/].

Background

My need for automatic company names

Recently, an associate and I started work on founding a software development
company. The one thing we struggled most with was to come up with a good
name. It has to sound good, be memorable, and the domain should still be
available. Both of us like certain themes, e.g. words from Celtic
languages. Sadly, most actual celtic words were already in use. We’d come up
with a nice name every one or two days, only to find out that there’s an
HR company and a ski model with that exact name [https://www.google.de/search?channel=fs&q=camox].

We needed a larger number of candidate names, and manual selection took too
long. I came up with an idea for a solution: Create a neural network and have it
generate new, artificial words that hopefully are not yet in use by other
companies. You’d feed it a corpus of sample words in a certain style you
like. For example, Celtic songs, or a Greek dictionary, or even a list of
Pokemon. If you train the model on the character-level text, it should pick up
the peculiarities of the text (the “language”) and then be able to sample new
similar sounding words.

A famous blog post by Andrej Karpathy [http://karpathy.github.io/2015/05/21/rnn-effectiveness/] provided me with the necessary knowledge
and the confidence that this is a realistic idea. In his post, he uses recurrent
neural networks (RNNs) to generate Shakespeare text, Wikipedia articles, and
(sadly, non-functioning) source code. Thus, my goal of generating single words
should not be a big problem.

Installation

Install from GitHub

Clone the repository and install the package:

git clone https://github.com/AlexEngelhardt/startup-name-generator.git
cd startup-name-generator
python setup.py install

I think this also works:

pip install --upgrade git+git://github.com/AlexEngelhardt/startup-name-generator.git

Install from PyPI

Just issue:

pip install sng

I am still working on making this package available on PyPI though.

Quickstart

In [1]:

%load_ext autoreload
%autoreload 2

In [2]:

While the sng package is not installed, add the package's path
(the parent directory) to the library path:

import os
import sys
sys.path.insert(0, os.path.abspath('../../'))

In [3]:

import sng

Using TensorFlow backend.

Prepare and train the model

Create a Config object to set your own preferences regarding training or
simulation:

In [4]:

cfg = sng.Config(
 epochs=50
)
cfg.to_dict()

Out[4]:

{'batch_size': 64,
 'debug': True,
 'epochs': 50,
 'hidden_dim': 50,
 'max_word_len': 12,
 'min_word_len': 4,
 'n_layers': 2,
 'suffix': '',
 'temperature': 1.0,
 'verbose': True}

Choose from one of these builtin wordlists to get started quickly:

In [5]:

sng.show_builtin_wordlists()

Out[5]:

['gallic.txt',
 'english.txt',
 'behemoth.txt',
 'lorem-ipsum.txt',
 'greek.txt',
 'black-speech.txt',
 'german.txt',
 'french.txt',
 'latin.txt',
 'pokemon.txt']

We’ll load the latin wordlist and look at a few sample words:

In [6]:

latin = sng.load_builtin_wordlist('latin.txt')

In [7]:

latin[:5]

Out[7]:

['in', 'nova', 'fert', 'animus', 'mutatas']

Initialize and fit the word generator:

In [8]:

gen = sng.Generator(wordlist=latin, config=cfg)

2973 words

24 characters, including the \n:
['\n', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'x', 'y', 'z']

First two sample words:
['versis\n', 'phoebe\n']

In [9]:

gen.fit()

epoch 0 words: Hgdrahqn, Zrley, Fmdiuus, Ozrhns, loss: 1.5835
epoch 10 words: Lacencumasm, Nococi, Ronse, Xbturuleraet, loss: 1.2565
epoch 20 words: Oacnidao, Crerdene, Raalibei, Gadentis, loss: 1.132
epoch 30 words: Tugonais, Oustis, Aipsa, Tumibes, loss: 1.0799
epoch 40 words: Viss, Rospis, Ursant, Untis, loss: 1.035

In [10]:

gen.simulate(n=4)

Out[10]:

['Matus', 'Ompanta', 'Virgimque', 'Tantae']

In [11]:

gen.config.suffix = ' Software'

In [12]:

gen.simulate(n=4)

Out[12]:

['Inbut Software', 'Lusior Software', 'Ronmaeis Software', 'Hummno Software']

Save and load the model for later

In [13]:

gen.save('my_model', overwrite=True)

Then:

In [14]:

gen2 = sng.Generator.load('my_model')

2973 words

24 characters, including the \n:
['\n', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'x', 'y', 'z']

First two sample words:
['opus\n', 'adorant\n']

In [15]:

gen2.simulate(n=4)

Out[15]:

['Inenterur Software', 'Unpremum Software', 'Astris Software', 'Urne Software']

In []:

Discussion

Data preprocessing

For input data, I just built a corpus by using raw, copy-pasted text that
sometimes included numbers and other symbols. A preprocessing was definitely
necessary. I first stripped out all non-letter characters (keeping
language-specific letters such as German umlauts). Then, I split the text up in
words and reduced the corpus to keep only unique words, i.e. one copy of each
word. I figured this step was reasonable since I did not want the model to learn
the most common words, but instead to get an understanding of the entire corpus’
structure.

After this, most text corpora ended up as a list of 1000 to 2000 words.

The RNN architecture

The question which type of neural network to use was easily answered. Recurrent neural networks can model language particularly well, and were the appropriate type for this task of word generation.

However, to my knowledge, finding the ‘perfect’ RNN architecture is still somewhat of a black art. Questions like how many layers, how many units, and how many epochs have no definite answer, but rely on experience, intuition, and sometimes just brute force.

I wanted a model that was as complex as necessary, but as simple as possible. This would save training time. After some experiments, I settled for a two-layer LSTM 50 units each, training it for 500 epochs and a batch size of 64 words. The words this model outputs sound good enough that I didn’t put any more energy in fine-tuning the architecture.

Sampling Temperature

The RNN generates a new name character by character. In particular, at any given
step, it does not just output a character, but the distribution for the next
character. This allows us to pick the letter with the highest probability, or
sample from the provided distribution.

A nice touch I found is to vary the temperature [https://cs.stackexchange.com/questions/79241/what-is-temperature-in-lstm-and-neural-networks-generally] of the sampling procedure. The
temperature is a parameter that adapts the weights to sample from. The
“standard” temperature 1 does not change the weights. For a low temperature,
trending towards zero, the sampling becomes less random and the letter
corresponding to the maximum weight is chosen almost always. The other extreme,
a large temperature trending towards infinity, will adjust the weights to a
uniform distribution, representing total randomness. You can lower the
temperature to get more conservative samples, or raise it to generate more
random words. For actual text sampling, a temperature below 1 might be
appropriate, but since I wanted new words, a higher temperature seemed better.

[image: _images/temperature.png]
In the image above, imagine we want to sample one letter from A, B, …, J. Your
RNN might output the weights represented by the red bars. You’d slightly favor
A, E, G, H, and J there. Now if you transform these weights with a very cold
temperature (see the yellow-ish bars), your model gets more conservative,
sticking to the argmax letter(s). In this case, you’d most likely get one letter
of E, G, and H. If you lower the temperature even further, your sampling will
always return the argmax letter, in this case, a G.

Alternatively, you can raise the temperature. In the image above, I plotted
green bars, representing a transformation applied with a temperature of 3. You
can still see the same preferences for E, G, and H, but the magnitude of the
differences is much lower now, resulting in a more random sampling, and
consecutively, in more random names. The extreme choice of a temperature
approaching infinity would result in a totally random sampling, which then would
make all your RNN training useless, of course. There is a sweet spot for the
temperature somewhere, which you have to discover by trial-and-error.

Modules

Config

The Config module. It defines the Config class.

	
class sng.Config.Config(**kwargs)

	Configuration options for model training and name generation

	**kwargs:

	Keyword arguments that will overwrite the default config options.

To create a Config object that results in simulating names between
6 and 10 letters:

cfg = sng.Config(
 min_word_len=6,
 max_word_len=10
)

To quickly inspect all values:

cfg.to_dict()

	
batch_size = None

	int: The batch size for training the RNN

	
debug = None

	bool: If true, methods will add some additional attributes
to a Generator object’s debug dict.

	
epochs = None

	int: How many epochs to train the RNN for?

	
hidden_dim = None

	int: Number of hidden units per LSTM layer

	
max_word_len = None

	int: How long should simulated words be maximum?

	
min_word_len = None

	int: How long should simulated words be at least?

	
n_layers = None

	int: How many LSTM layers in the model?

	
suffix = None

	str: A suffix to append to the suggested names.

Choose e.g. ” Software” (with a leading space!) to see how your
company name would look with the word Software at the end.

	
temperature = None

	float: Sampling temperature. Lower values are “colder”, i.e.
sampling probabilities will be more conservative.

	
to_dict()

	Convert Config object to dictionary.

	
verbose = None

	bool: If true, prints helpful messages on what is happening.

Generator

	
class sng.Generator.Generator(config=<sng.Config.Config object>, wordlist_file=None, wordlist=None)

	Main class that holds the config, wordlist, and the trained model.

	configsng.Config, optional

	A Config instance specifying training and simulation parameters.
If not supplied, a default configuration will be created.

	wordlist_filestr

	Path to a textfile holding the text corpus you want to use.

	wordlistlist of strings

	Alternatively to wordlist_file, you can provide the already
processed wordlist, a list of (ideally unique) strings.

	configsng.Config

	The Config object supplied, or a default object if none was supplied
at initialization.

	wordlistlist of strings

	A processed list of unique words, each ending in a newline.
This is the input to the neural network.

You can create a word generator like this:

import sng
cfg = sng.Config()

Folder for pre-installed wordlists:
wordlist_folder = os.path.join(
 os.path.dirname(os.path.abspath(sng.__file__)), 'wordlists')
sample_wordlist = os.path.join(wordlist_folder, 'latin.txt')

Create a Generator object with some wordlist:
gen = sng.Generator(wordlist_file=sample_wordlist, config=cfg)

Train the model:
gen.fit()

Get a few name suggestions:
gen.simulate(n=5)

	
fit()

	Fit the model. Adds the ‘model’ attribute to itself.

	
classmethod load(directory)

	Create a Generator object from a stored folder.

	directorystr

	Folder where you used Generator.save() to store the contents in.

	
save(directory, overwrite=False)

	Save the model into a folder.

	directorystr

	The folder to store the generator in. Should be non-existing.

	overwritebool

	If True, the folder contents will be overwritten if it already
exists. Not recommended, though.

	
simulate(n=10, temperature=None, min_word_len=None, max_word_len=None)

	Use the trained model to simulate a few name suggestions.

	nint

	The number of name suggestions to simulate

	temperaturefloat or None

	Sampling temperature. Lower values are “colder”, i.e.
sampling probabilities will be more conservative.
If None, will use the value specified in self.config.

	min_word_lenint or None

	Minimum word length of the simulated names.
If None, will use the value specified in self.config.

	max_word_lenint or None

	Maximum word length of the simulated names.
If None, will use the value specified in self.config.

Wordlists

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sng	

 	
 	
 sng.Config	

 	
 	
 sng.Generator	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | S
 | T
 | V

B

 	
 	batch_size (sng.Config.Config attribute)

C

 	
 	Config (class in sng.Config)

D

 	
 	debug (sng.Config.Config attribute)

E

 	
 	epochs (sng.Config.Config attribute)

F

 	
 	fit() (sng.Generator.Generator method)

G

 	
 	Generator (class in sng.Generator)

H

 	
 	hidden_dim (sng.Config.Config attribute)

L

 	
 	load() (sng.Generator.Generator class method)

M

 	
 	max_word_len (sng.Config.Config attribute)

 	
 	min_word_len (sng.Config.Config attribute)

N

 	
 	n_layers (sng.Config.Config attribute)

S

 	
 	save() (sng.Generator.Generator method)

 	simulate() (sng.Generator.Generator method)

 	
 	sng.Config (module)

 	sng.Generator (module)

 	suffix (sng.Config.Config attribute)

T

 	
 	temperature (sng.Config.Config attribute)

 	
 	to_dict() (sng.Config.Config method)

V

 	
 	verbose (sng.Config.Config attribute)

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_images/temperature.png
01 02 03 04 05

00

The effect of varying the temperature

= temperature 1
temperaure 0.1
= temperature 3

'Hud '!‘

b

_static/ajax-loader.gif

_static/temperature.png
01 02 03 04 05

00

The effect of varying the temperature

= temperature 1
temperaure 0.1
= temperature 3

'Hud '!‘

b

nav.xhtml

 Table of Contents

 		
 Welcome to sng’s documentation!

 		
 Introduction

 		
 Summary

 		
 Supplied wordlists

 		
 Celtic

 		
 Pokemon

 		
 Tolkien’s Black Speech

 		
 Death metal lyrics

 		
 Background

 		
 My need for automatic company names

 		
 Installation

 		
 Install from GitHub

 		
 Install from PyPI

 		
 Quickstart

 		
 Prepare and train the model

 		
 Save and load the model for later

 		
 Discussion

 		
 Data preprocessing

 		
 The RNN architecture

 		
 Sampling Temperature

 		
 Modules

 		
 Config

 		
 Generator

 		
 Wordlists

_static/up-pressed.png

_static/up.png

